
www.hdfgroup.org 

The HDF Group 

Parallel HDF5 

August 12, 2014 Extreme Scale Computing PHDF5 

Quincey Koziol 
Director of Core Software & HPC 

The HDF Group 



www.hdfgroup.org 

Advantage of Parallel HDF5 

•  Recent success story 
•  Trillion particle simulation on hopper @ NERSC 
•  120,000 cores 
•  30TB file 
•  23GB/sec average speed with 35GB/sec peaks 

(out of 40GB/sec max for system) 
•  Parallel HDF5 rocks! (when used properly J) 
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Outline 

•  Overview of Parallel HDF5 design 
•  Parallel Environment Requirements 
•  PHDF5 Programming Model 
•  Examples 
•  Performance Analysis 
•  Parallel Tools 
•  Upcoming features of HDF5 (if time 

permits) 
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MPI-I/O VS. HDF5 
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MPI-IO vs. HDF5 

•  MPI-IO is an Input/Output API 
•  It treats the data file as a “linear byte 

stream” and each MPI application needs 
to provide its own file view and data 
representations to interpret those bytes  

August 12, 2014 Extreme Scale Computing PHDF5 



www.hdfgroup.org 

MPI-IO vs. HDF5 

•  All data stored are machine dependent 
except the “external32” representation 

•  External32 is defined in Big Endianness 
•  Little-endian machines have to do the data 

conversion in both read or write operations 
•  64-bit sized data types may lose 

information 

August 12, 2014 Extreme Scale Computing PHDF5 



www.hdfgroup.org 

MPI-IO vs. HDF5 

•  HDF5 is data management software 
•  It stores data and metadata according 

to the HDF5 data format definition 
•  HDF5 file is self-describing 

•  Each machine can store the data in its own 
native representation for efficient I/O 
without loss of data precision 

•  Any necessary data representation 
conversion is done by the HDF5 library 
automatically 
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OVERVIEW OF PARALLEL 
HDF5 DESIGN 
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•  PHDF5 should allow multiple processes to 
perform I/O to an HDF5 file at the same 
time 
•  Single file image to all processes 
•  Compare with one file per process design: 

•  Expensive post processing 
• Not usable by different number of processes 
•  Too many files produced for file system 

•  PHDF5 should use a standard parallel I/O 
interface 

•  Must be portable to different platforms 

PHDF5 Requirements 
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PHDF5 requirements 

•  Support Message Passing Interface 
(MPI) programming 

•  PHDF5 files compatible with serial 
HDF5 files 
• Shareable between different serial or 

parallel platforms 
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Parallel environment requirements 

•  MPI with MPI-IO 
•  MPICH, OpenMPI w/ROMIO 
•  Vendor’s MPI-IO 

•  Parallel file system 
•  IBM GPFS 
•  Lustre 
•  PVFS 
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PHDF5 implementation layers 

HDF5 Application 

Compute node Compute node Compute node 

HDF5 Library 

MPI Library 

HDF5 file on Parallel File System  

Switch network + I/O servers 

  

Disk architecture and layout of data on disk 
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PHDF5 CONSISTENCY 
SEMANTICS 
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Consistency Semantics 

•  Consistency semantics: Rules that define the 
outcome of multiple, possibly concurrent, 
accesses to an object or data structure by one 
or more processes in a computer system.  
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PHDF5 Consistency Semantics 

•  PHDF5 library defines a set of consistency 
semantics to let users know what to expect 
when processes access data managed by the 
library. 
•  When the changes a process makes are 

actually visible to itself (if it tries to read back 
that data) or to other processes that access the 
same file with independent or collective I/O 
operations 
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HDF5 MPI-I/O consistency semantics 

•  Same as MPI-I/O semantics 

•  Default MPI-I/O semantics doesn’t 
guarantee atomicity or sequence of calls! 

•  Problems may occur (although we haven’t 
seen any) when writing/reading HDF5 
metadata or raw data 

 

Process 0 Process 1 
MPI_File_write_at() 
MPI_Barrier() MPI_Barrier() 

MPI_File_read_at() 
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HDF5 MPI-I/O consistency semantics 

•  MPI I/O provides atomicity and sync-barrier-
sync features to address the issue 

•  PHDF5 follows MPI I/O 
•  H5Fset_mpio_atomicity function to turn on 

MPI atomicity 
•  H5Fsync function to transfer written data to 

storage device (in implementation now) 
•  Alternatively: We are currently working on 

reimplementation of metadata caching for 
PHDF5 (using a metadata server) 
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HDF5 MPI-I/O consistency semantics 

•  For more information see “Enabling a strict 
consistency semantics model in parallel 
HDF5” linked from H5Fset_mpi_atomicity 
RM page1 

 
1 http://www.hdfgroup.org/HDF5/doc/RM/Advanced/
PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf 
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HDF5 PARALLEL 
PROGRAMMING MODEL 
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How to compile PHDF5 applications 

•  h5pcc – HDF5 C compiler command 
•  Similar to mpicc 

•  h5pfc – HDF5 F90 compiler command 
•   Similar to mpif90 

•  To compile: 
•  % h5pcc h5prog.c 
•  % h5pfc h5prog.f90 
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Programming restrictions 

•  PHDF5 opens a parallel file with an MPI 
communicator 
•  Returns a file handle 
•  Future access to the file via the file handle 
•  All processes must participate in collective 

PHDF5 APIs 
•  Different files can be opened via different 

communicators 
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Collective HDF5 calls  

•  All HDF5 APIs that modify structural 
metadata are collective! 
•  File operations 
-  H5Fcreate,	  H5Fopen,	  H5Fclose,	  etc	  

•  Object creation  
- 	  H5Dcreate,	  H5Dclose,	  etc	  

•  Object structure modification (e.g., dataset 
extent modification) 
-  H5Dset_extent,	  etc	  

•  http://www.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html 
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Other HDF5 calls  

•  Array data transfer can be collective or 
independent 
- Dataset operations: H5Dwrite,	  H5Dread	  

•  Collectiveness is indicated by function 
parameters, not by function names as in MPI API 
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What does PHDF5 support ? 

•  After a file is opened by the processes of a 
communicator 
•  All parts of file are accessible by all processes 
•  All objects in the file are accessible by all 

processes 
•  Multiple processes may write to the same data 

array 
•  Each process may write to individual data array 
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PHDF5 API languages 

•  C and F90, 2003 language interfaces 
•  Most platforms with MPI-IO supported. e.g., 

•  IBM AIX 
•  Linux clusters 
•  Cray XT 
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Programming model 

•  HDF5 uses access template object 
(property list) to control the file access 
mechanism 

•  General model to access HDF5 file in 
parallel: 
- Set up MPI-IO access template (file access 

property list) 
- Open File  
- Access Data 
- Close File 
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MY FIRST PARALLEL HDF5 
PROGRAM 

Moving your sequential application to the HDF5 parallel world 
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Example of PHDF5 C program 

Parallel HDF5 program has extra calls 
	  

MPI_Init(&argc, &argv); 
 
1.   fapl_id = H5Pcreate(H5P_FILE_ACCESS); 
2.             H5Pset_fapl_mpio(fapl_id, comm, info); 
3.   file_id = H5Fcreate(FNAME,…, fapl_id); 
4.   space_id = H5Screate_simple(…); 
5.   dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT, 

space_id,…); 
6.   xf_id = H5Pcreate(H5P_DATASET_XFER); 
7.           H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE); 
8.   status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id…); 
  
MPI_Finalize(); 
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EXAMPLE 
Writing patterns 
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Parallel HDF5 tutorial examples 

•  For simple examples how to write different 
data patterns see 

 http://www.hdfgroup.org/HDF5/Tutor/parallel.html 
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Programming model 

•  Each process defines memory and file 
hyperslabs using H5Sselect_hyperslab	  

•  Each process executes a write/read call using 
hyperslabs defined, which can be either 
collective or independent 

•  The hyperslab parameters define the portion of 
the dataset to write to  
- Contiguous hyperslab 
- Regularly spaced data (column or row) 
- Pattern 
- Blocks 
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Four processes writing by rows 

HDF5	  "SDS_row.h5"	  {	  
GROUP	  "/"	  {	  
	  	  	  DATASET	  "IntArray"	  {	  
	  	  	  	  	  	  DATATYPE	  	  H5T_STD_I32BE	  	  	  
	  	  	  	  	  	  DATASPACE	  	  SIMPLE	  {	  (	  8,	  5	  )	  /	  (	  8,	  5	  )	  }	  	  
	  	  	  	  	  	  DATA	  {	  
	  	  	  	  	  	  	  	  	  10,	  10,	  10,	  10,	  10,	  
	  	  	  	  	  	  	  	  	  10,	  10,	  10,	  10,	  10,	  
	  	  	  	  	  	  	  	  	  11,	  11,	  11,	  11,	  11,	  
	  	  	  	  	  	  	  	  	  11,	  11,	  11,	  11,	  11,	  
	  	  	  	  	  	  	  	  	  12,	  12,	  12,	  12,	  12,	  
	  	  	  	  	  	  	  	  	  12,	  12,	  12,	  12,	  12,	  
	  	  	  	  	  	  	  	  	  13,	  13,	  13,	  13,	  13,	  
	  	  	  	  	  	  	  	  	  13,	  13,	  13,	  13,	  13	  
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Two processes writing by columns 
 
HDF5	  "SDS_col.h5"	  {	  
GROUP	  "/"	  {	  
	  	  	  DATASET	  "IntArray"	  {	  
	  	  	  	  	  	  DATATYPE	  	  H5T_STD_I32BE	  	  	  
	  	  	  	  	  	  DATASPACE	  	  SIMPLE	  {	  (	  8,	  6	  )	  /	  (	  8,	  6	  )	  }	  	  
	  	  	  	  	  	  DATA	  {	  
	  	  	  	  	  	  	  	  	  1,	  2,	  10,	  20,	  100,	  200,	  
	  	  	  	  	  	  	  	  	  1,	  2,	  10,	  20,	  100,	  200,	  
	  	  	  	  	  	  	  	  	  1,	  2,	  10,	  20,	  100,	  200,	  
	  	  	  	  	  	  	  	  	  1,	  2,	  10,	  20,	  100,	  200,	  
	  	  	  	  	  	  	  	  	  1,	  2,	  10,	  20,	  100,	  200,	  
	  	  	  	  	  	  	  	  	  1,	  2,	  10,	  20,	  100,	  200,	  
	  	  	  	  	  	  	  	  	  1,	  2,	  10,	  20,	  100,	  200,	  
	  	  	  	  	  	  	  	  	  1,	  2,	  10,	  20,	  100,	  200	  
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Four processes writing by pattern 
 

HDF5	  "SDS_pat.h5"	  {	  
GROUP	  "/"	  {	  
	  	  	  DATASET	  "IntArray"	  {	  
	  	  	  	  	  	  DATATYPE	  	  H5T_STD_I32BE	  	  	  
	  	  	  	  	  	  DATASPACE	  	  SIMPLE	  {	  (	  8,	  4	  )	  /	  (	  8,	  4	  )	  }	  	  
	  	  	  	  	  	  DATA	  {	  
	  	  	  	  	  	  	  	  	  1,	  3,	  1,	  3,	  
	  	  	  	  	  	  	  	  	  2,	  4,	  2,	  4,	  
	  	  	  	  	  	  	  	  	  1,	  3,	  1,	  3,	  
	  	  	  	  	  	  	  	  	  2,	  4,	  2,	  4,	  
	  	  	  	  	  	  	  	  	  1,	  3,	  1,	  3,	  
	  	  	  	  	  	  	  	  	  2,	  4,	  2,	  4,	  
	  	  	  	  	  	  	  	  	  1,	  3,	  1,	  3,	  
	  	  	  	  	  	  	  	  	  2,	  4,	  2,	  4	  
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Four processes writing by blocks 

HDF5	  "SDS_blk.h5"	  {	  
GROUP	  "/"	  {	  
	  	  	  DATASET	  "IntArray"	  {	  
	  	  	  	  	  	  DATATYPE	  	  H5T_STD_I32BE	  	  	  
	  	  	  	  	  	  DATASPACE	  	  SIMPLE	  {	  (	  8,	  4	  )	  /	  (	  8,	  4	  )	  }	  	  
	  	  	  	  	  	  DATA	  {	  
	  	  	  	  	  	  	  	  	  1,	  1,	  2,	  2,	  
	  	  	  	  	  	  	  	  	  1,	  1,	  2,	  2,	  
	  	  	  	  	  	  	  	  	  1,	  1,	  2,	  2,	  
	  	  	  	  	  	  	  	  	  1,	  1,	  2,	  2,	  
	  	  	  	  	  	  	  	  	  3,	  3,	  4,	  4,	  
	  	  	  	  	  	  	  	  	  3,	  3,	  4,	  4,	  
	  	  	  	  	  	  	  	  	  3,	  3,	  4,	  4,	  
	  	  	  	  	  	  	  	  	  3,	  3,	  4,	  4	  
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Complex data patterns 
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HDF5 doesn’t have restrictions on data patterns and data balance 
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Examples of irregular selection 

•  Internally, the HDF5 library creates an MPI 
datatype for each lower dimension in the 
selection and then combines those types into 
one giant structured MPI datatype 
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PERFORMANCE ANALYSIS 
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Performance analysis 

•  Some common causes of poor performance 
•  Possible solutions 
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My PHDF5 application I/O is slow 

• Raw I/O data sizes 
•  Independent vs. Collective I/O 
“Tuning HDF5 for Lustre File Systems” by 
Howison, Koziol, Knaak, Mainzer, and 
Shalf 

v  Chunking and hyperslab selection 
v  HDF5 metadata cache 
v  Specific I/O system hints 
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INDEPENDENT VS. 
COLLECTIVE RAW DATA I/O 
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Collective vs. independent calls 

•  MPI definition of collective calls: 
•  All processes of the communicator must participate 

in calls in the right order. E.g., 
•  Process1       Process2 
•  call A(); call B();      call A(); call B();  **right** 
•  call A(); call B();      call B(); call A();  **wrong** 

•  Independent means not collective J 
•  Collective is not necessarily synchronous, nor 

must require communication 
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Independent vs. collective access 

•  User reported 
independent data 
transfer mode was 
much slower than 
the collective data 
transfer mode 

•  Data array was tall 
and thin: 230,000 
rows by 6 columns 

: 
: 
: 

230,000 rows 
: 
: 
: 
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Debug Slow Parallel I/O Speed(1) 

•  Writing to one dataset 
- Using 4 processes == 4 columns 
- datatype is 8-byte doubles 
- 4 processes, 1000 rows == 4x1000x8 = 32,000 

bytes 
•  % mpirun -np 4 ./a.out 1000 
- Execution time: 1.783798 s. 

•  % mpirun -np 4 ./a.out 2000 
- Execution time: 3.838858 s. 

•  Difference of 2 seconds for 1000 more rows = 
32,000 bytes. 

•  Speed of 16KB/sec!!! Way too slow. 
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Debug slow parallel I/O speed(2) 

•  Build a version of PHDF5 with  
•  ./configure --enable-debug --enable-parallel … 
•  This allows the tracing of MPIO I/O calls in the 

HDF5 library. 
•  E.g., to trace 

•  MPI_File_read_xx and MPI_File_write_xx calls 
•  % setenv H5FD_mpio_Debug “rw” 
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Debug slow parallel I/O speed(3) 

% setenv H5FD_mpio_Debug ’rw’ 
% mpirun -np 4 ./a.out 1000  # Indep.; contiguous. 
in H5FD_mpio_write  mpi_off=0  size_i=96 
in H5FD_mpio_write  mpi_off=0  size_i=96 
in H5FD_mpio_write  mpi_off=0  size_i=96 
in H5FD_mpio_write  mpi_off=0  size_i=96 
in H5FD_mpio_write  mpi_off=2056  size_i=8 
in H5FD_mpio_write  mpi_off=2048  size_i=8 
in H5FD_mpio_write  mpi_off=2072  size_i=8 
in H5FD_mpio_write  mpi_off=2064  size_i=8 
in H5FD_mpio_write  mpi_off=2088  size_i=8 
in H5FD_mpio_write  mpi_off=2080  size_i=8 
… 
•  Total of 4000 of these little 8 bytes writes == 32,000 bytes. 
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Independent calls are many and small 

•  Each process writes 
one element of one 
row, skips to next 
row, write one 
element, so on. 

•  Each process issues 
230,000 writes of 8 
bytes each. 

: 
: 
: 

230,000 rows 
: 
: 
: 
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Debug slow parallel I/O speed (4) 

% setenv H5FD_mpio_Debug ’rw’ 
% mpirun -np 4 ./a.out 1000  # Indep., Chunked by column. 
in H5FD_mpio_write  mpi_off=0  size_i=96 
in H5FD_mpio_write  mpi_off=0  size_i=96 
in H5FD_mpio_write  mpi_off=0  size_i=96 
in H5FD_mpio_write  mpi_off=0  size_i=96 
in H5FD_mpio_write  mpi_off=3688    size_i=8000 
in H5FD_mpio_write  mpi_off=11688   size_i=8000 
in H5FD_mpio_write  mpi_off=27688   size_i=8000 
in H5FD_mpio_write  mpi_off=19688   size_i=8000 
in H5FD_mpio_write  mpi_off=96   size_i=40 
in H5FD_mpio_write  mpi_off=136  size_i=544 
in H5FD_mpio_write  mpi_off=680  size_i=120 
in H5FD_mpio_write  mpi_off=800  size_i=272 
… 
Execution time: 0.011599 s. 
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Use collective mode or chunked storage 

•  Collective I/O will 
combine many small 
independent calls 
into few but bigger 
calls 

•  Chunks of columns 
speeds up too 

: 
: 
: 

230,000 rows 
: 
: 
: 
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Collective vs. independent write 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

0.25 0.5 1 1.88 2.29 2.75 

Se
co

nd
s 

to
 w

rit
e 

Data size in MBs 

Independent write 
Collective write 

August 12, 2014 Extreme Scale Computing PHDF5 



www.hdfgroup.org 

Collective I/O in HDF5 

•  Set up using a Data Transfer Property List 
(DXPL) 

•  All processes must participate in the I/O call 
(H5Dread/write) with a selection (which could 
be a NULL selection) 

•  Some cases where collective I/O is not used 
even when the use asks for it: 
•  Data conversion 
•  Compressed Storage 
•  Chunking Storage: 

• When the chunk is not selected by a certain 
number of processes 
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Enabling Collective Parallel I/O with HDF5 

/* Set up file access property list w/parallel I/O access */ 
fa_plist_id = H5Pcreate(H5P_FILE_ACCESS); 
H5Pset_fapl_mpio(fa_plist_id, comm, info); 
 
/* Create a new file collectively */ 
file_id = H5Fcreate(filename, H5F_ACC_TRUNC,  

 H5P_DEFAULT, fa_plist_id); 
 
/* <omitted data decomposition for brevity> */ 
 
/* Set up data transfer property list w/collective MPI-IO */ 
dx_plist_id = H5Pcreate(H5P_DATASET_XFER); 
H5Pset_dxpl_mpio(dx_plist_id, H5FD_MPIO_COLLECTIVE); 
 
/* Write data elements to the dataset */ 
status = H5Dwrite(dset_id, H5T_NATIVE_INT,  

 memspace, filespace, dx_plist_id, data); 
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Collective I/O in HDF5 

•  Can query Data Transfer Property List (DXPL) 
after I/O for collective I/O status: 
•  H5Pget_mpio_actual_io_mode 

• Retrieves the type of I/O that HDF5 actually 
performed on the last parallel I/O call 

•  H5Pget_mpio_no_collective_cause 
• Retrieves local and global causes that broke 

collective I/O on the last parallel I/O call 
•  H5Pget_mpio_actual_chunk_opt_mode 

• Retrieves the type of chunk optimization that 
HDF5 actually performed on the last parallel I/O 
call. This is not necessarily the type of 
optimization requested 
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EFFECT OF HDF5 STORAGE 
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Contiguous storage 

•  Metadata header separate from dataset data 
•  Data stored in one contiguous block in HDF5 file 

Application memory 

Metadata cache 
Dataset header 

…………. 
Datatype 

Dataspace 
…………. 
Attributes 

… 

File   

Dataset data 

Dataset data 
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On a parallel file system 

File Dataset data 

OST 1 OST 2 OST 3 OST 4 

The file is striped over multiple OSTs depending on 
the stripe size and stripe count that the file was 
created with. 
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Chunked storage 

•  Data is stored in chunks of predefined size 
•  Two-dimensional instance may be referred to as data 

tiling  
•  HDF5 library writes/reads the whole chunk 

Contiguous Chunked 
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Chunked storage (cont.) 

•  Dataset data is divided into equally sized blocks (chunks). 
•  Each chunk is stored separately as a contiguous block in 

HDF5 file. 

Application memory 

Metadata cache 
Dataset header 

…………. 
Datatype 

Dataspace 
…………. 
Attributes 

… 

File 

Dataset data 

A D C B header Chunk 
index 

Chunk 
index 

A B C D
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On a parallel file system 

File A D C B 

OST 1 OST 2 OST 3 OST 4 

header Chunk 
index 

The file is striped over multiple OSTs depending on 
the stripe size and stripe count that the file was 
created with 
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Which is better for performance? 

•  It depends!! 
•  Consider these selections: 

•  If contiguous: 2 seeks 
•  If chunked: 10 seeks 

•  If contiguous: 16 seeks 
•  If chunked: 4 seeks 

Add to that striping over a Parallel File System, which 
makes this problem very hard to solve! 
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Chunking and hyperslab selection 

•  When writing or reading, try to use hyperslab 
selections that coincide with chunk boundaries. 

•  If not possible, HDF5 provides some options 
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Parallel I/O on chunked datasets 

•  Multiple options for performing I/O when 
collective: 
•  Operate on all chunks in one collective I/O 

operation: “Linked chunk I/O” 
•  Operate on each chunk collectively: “Multi-

chunk I/O” 
•  Break collective I/O and perform I/O on each 

chunk independently (also in “Multi-chunk I/O” 
algorithm) 
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Linked chunk I/O 

•  One MPI Collective I/O Call 
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Multi-chunk I/O 

•  Collective I/O per chunk 
•  Determine for each chunk if enough processes 

have a selection inside to do collective I/O 
•  If not enough, use independent I/O  
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Decision making 
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EFFECT OF HDF5 METADATA 
CACHE 
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PHDF5 and Metadata 

•  Metadata operations: 
•  Creating/removing a dataset, group, attribute, etc… 
•  Extending a dataset’s dimensions 
•  Modifying group hierarchy 
•  etc … 

•  All operations that modify metadata are collective, 
i.e., all processes have to call that operation: 
•  If you have 10,000 processes running your 

application, and one process needs to create a 
dataset, ALL processes must call H5Dcreate to 
create 1 dataset. 
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Space allocation 

•  Allocating space at the file’s EOA is very simple in 
serial HDF5 applications:  
•  the EOA value begins at offset 0 in the file  
•  when space is required, the EOA value is 

incremented by the size of the block requested.  
•  Space allocation using the EOA value in parallel 

HDF5 applications can result in a race condition if 
processes do not synchronize with each other:  
•  multiple processes believe that they are the sole 

owner of a range of bytes within the HDF5 file. 
•  Solution: Make it Collective 
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Example 

•  Consider this case, where 2 processes want 
to create a dataset each. 

P1 

H5Dcreate(D1) H5Dcreate(D2) 

Each call has to allocate space in file to store 
the dataset header. 

Bytes 4 to 10 in the file are 
free 

Bytes 4 to 10 in the file are 
free 

Conflict! 
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Example 

P1 

H5Dcreate(D1) H5Dcreate(D1) 
Allocate space in file to store the dataset header. 
Bytes 4 to 10 in the file are free. 

Create the dataset. 
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Metadata cache 

•  To handle synchronization issues, all HDF5 
operations that could potentially modify the 
metadata in an HDF5 file are required to be 
collective 
•  A list of those routines is available in the HDF5 

reference manual (
http://www.hdfgroup.org/HDF5/doc/RM/
CollectiveCalls.html) 

•  If those operations are not collective, how can 
each process manage its Metadata Cache? 
•  Do not have one, i.e. always access metadata 

directly from disk 
•  Disastrous for performance as metadata is usually 

very small 
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Managing the metadata cache 

•  All operations that modify metadata in the HDF5 
file are collective:  
•  All processes will have the same dirty metadata 

entries in their cache (i.e., metadata that is 
inconsistent with what is on disk).  

•  Processes are not required to have the same clean 
metadata entries (i.e., metadata that is in sync with 
what is on disk).  

•  Internally, the metadata cache running on process 
0 is responsible for managing changes to the 
metadata in the HDF5 file.  
•  All the other caches must retain dirty metadata until 

the process 0 cache tells them that the metadata is 
clean (i.e., on disk).  
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Example 

E1 

E2 

E3 

E4 

E1 

E7 

E8 

E2 

E4 

E6 

E1 

E5 

E12 

E32 

E1 

E4 

P0 P1 P2 P3 

•  Metadata Cache is clean for all processes: 
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Example 

•  All processes call H5Gcreate that modifies 
metadata entry E3 in the file: 

E3 

E1 

E2 

E4 

E3 

E1 

E7 

E8 

E3 

E4 

E6 

E1 

E3 

E12 

E32 

E1 
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Example 

•  All processes call H5Dcreate that modifies 
metadata entry E2 in the file: 

E3 

E2 

E1 

E4 

E3 

E2 

E1 

E7 

E3 

E2 

E4 

E6 

E3 

E2 

E12 

E32 

August 12, 2014 Extreme Scale Computing PHDF5 

P0 P1 P2 P3 



www.hdfgroup.org 

Example 

•  Process 0 calls H5Dopen on a dataset 
accessing entry E5 

E3 

E2 

E1 

E7 

E3 

E2 

E4 

E6 

E3 

E2 

E12 

E32 

E5 
E3 

E2 

E1 
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Flushing the cache 

•  Initiated when: 
•  The size of dirty entries in cache exceeds a 

certain threshold 
•  The user calls a flush 

•  The actual flush of metadata entries to disk is 
currently implemented in two ways: 
•  Single Process  (Process 0) write 
•  Distributed write 
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Single Process  (Process 0) write 

•  All processes enter a synchronization point. 
•  Process 0 writes all the dirty entries to disk 

while other processes wait and do nothing 
•  Process 0 marks all the dirty entries as clean 
•  Process 0 broadcasts the cleaned entries to all 

processes that marks them as clean too 
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Distributed write 

•  All processes enter a synchronization point. 
•  Process 0 broadcasts the metadata that needs 

to be flushed to all processes 
•  Using a distributed algorithm each determines 

what part of the metadata cache entries it 
needs to write, and writes them to disk 
independently 

•  All processes mark the flushed metadata as 
clean 
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PARALLEL TOOLS 
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Parallel tools 

•  h5perf 
•  Performance measuring tool showing      

I/O performance for different I/O APIs 
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h5perf 

•  An I/O performance measurement tool 
•  Tests 3 File I/O APIs: 

•  POSIX I/O (open/write/read/close…) 
•  MPI-I/O (MPI_File_{open,write,read,close}) 
•  HDF5 (H5Fopen/H5Dwrite/H5Dread/H5Fclose) 

•  An indication of I/O speed upper limits 
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Useful parallel HDF5 links 

•  Parallel HDF information site 
http://www.hdfgroup.org/HDF5/PHDF5/ 

•  Parallel HDF5 tutorial available at 
http://www.hdfgroup.org/HDF5/Tutor/ 

•  HDF Help email address 
help@hdfgroup.org 
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UPCOMING FEATURES IN 
HDF5 
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PHDF5 Improvements in Progress 

•  Multi-dataset read/write operations 
•  Allows single collective operation on multiple 

datasets 
•  Similar to PnetCDF “write-combining” feature 

•  H5Dmulti_read/write(<array of datasets, 
selections, etc>) 

•  Order of magnitude speedup (see next slides) 
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H5Dwrite vs. H5Dwrite_multi 
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H5Dwrite vs. H5Dwrite_multi 

August 12, 2014 Extreme Scale Computing PHDF5 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

400 800 1600 3200 6400 

W
rit

e 
tim

e 
in

 s
ec

on
ds

 

Number of datasets 

H5Dwrite 
H5Dwrite_multi 

Rank = 1 
Dims = 200 

Contiguous floating-point datasets  



www.hdfgroup.org 

PHDF5 Improvements in Progress 

•  Avoid file truncation 
•  File format currently requires call to truncate 

file, when closing 
•  Expensive in parallel (MPI_File_set_size) 
•  Change to file format will eliminate truncate call 
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PHDF5 Improvements in Progress 

•  Collective Object Open 
•  Currently, object open is independent 
•  All processes perform I/O to read metadata 

from file, resulting in I/O storm at file system 
•  Change will allow a single process to read, then 

broadcast metadata to other processes 
•  Virtual Object Layer (VOL) 
•  I/O Autotuning 
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VIRTUAL OBJECT LAYER 
(VOL) 
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Virtual Object Layer (VOL) 

•  Goal  
- Provide an application with the HDF5 data model 

and API, but allow different underlying storage 
mechanisms 

•  New layer below HDF5 API 
-  Intercepts all API calls that can touch the data on 

disk and routes them to a VOL plugin 
•  Potential VOL plugins: 
- Native HDF5 driver (writes to HDF5 file) 
- Raw driver (maps groups to file system directories 

and datasets to files in directories) 
- Remote driver (the file exists on a remote machine) 

August 12, 2014 Extreme Scale Computing PHDF5 



www.hdfgroup.org 

Virtual Object Layer 
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Why not use the VFL? 

•  VFL is implemented below the HDF5 
abstract model 
- Deals with blocks of bytes in the storage 

container 
- Does not recognize HDF5 objects nor abstract 

operations on those objects 
•  VOL is layered right below the API layer to 

capture the HDF5 model 
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Sample API Function Implementation 

hid_t	  H5Dcreate2	  (hid_t	  loc_id,	  const	  char	  *name,	  
hid_t	  type_id,	  hid_t	  space_id,	  hid_t	  lcpl_id,	  hid_t	  
dcpl_id,	  hid_t	  dapl_id)	  {	  
/*	  Check	  arguments	  */	  

	  …	  
/*	  call	  corresponding	  VOL	  callback	  for	  H5Dcreate	  */	  
	  dset_id	  =	  H5_VOL_create	  (TYPE_DATASET,	  …);	  
/*	  	  
	  Return	  result	  to	  user	  (yes	  the	  dataset	  is	  created,	  
	  or	  no	  here	  is	  the	  error)	  	  
*/	  
	  return	  dset_id;	  
}	  
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CONSIDERATIONS 
Work in progress: VOL 
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VOL Plugin Selection 

•  Use a pre-defined VOL plugin: 
hid_t	  fapl	  =	  H5Pcreate(H5P_FILE_ACCESS);	  
H5Pset_fapl_mds_vol(fapl,	  …);	  
hid_t	  file	  =	  H5Fcreate("foo.h5",	  …,	  …,	  fapl);	  
H5Pclose(fapl);	  

•  Register user defined VOL plugin: 
H5VOLregister	  (H5VOL_class_t	  *cls)	  
H5VOLunregister	  (hid_t	  driver_id)	  
H5Pget_plugin_info	  (hid_t	  plist_id)	  
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Interchanging and Stacking Plugins 

•  Interchanging VOL plugins 
•  Should be a valid thing to do 
•  User’s responsibility to ensure plugins coexist 

•  Stacking plugins 

•  Stacking should make sense. 
•  For example, the first VOL plugin in a 

stack could be a statistics plugin, that 
does nothing but gather information on 
what API calls are made and their 
corresponding parameters. 
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Mirroring 

•  Extension to stacking 
•  HDF5 API calls are forwarded through a mirror plugin to 

two or more VOL plugins 
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Sample Plugins (I) 

•  Different File Format plugins 
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Sample Plugins: Metadata Server 
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Raw Plugin 

•  The flexibility of the virtual object layer 
provides developers with the option to 
abandon the single file, binary format like the 
native HDF5 implementation.  

•  A “raw” file format could map HDF5 objects 
(groups, datasets, etc …) to file system objects 
(directories, files, etc …).  

•  The entire set of raw file system objects 
created would represent one HDF5 container. 

•  Useful to the PLFS package (
http://institute.lanl.gov/plfs/) 
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Remote Plugin 

•  A remote VOL plugin would allow access to 
files located remotely.  

•  The plugin could have an HDF5 server module 
located where the HDF5 file resides and 
listens to incoming requests from a remote 
process.  

•  Use case: Remote visualization 
•  Large, remote datasets are very expensive to 

migrate to the local visualization system.  
•  It would be faster to just enable in situ 

visualization to remotely access the data using 
the HDF5 API.  
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Implementation 

•  VOL Class 
- Data structure containing general variables and 

a collection of function pointers for HDF5 API 
calls 

•  Function Callbacks 
- API routines that potentially touch data on disk 
- H5F, H5D, H5A, H5O, H5G, H5L, and H5T  
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Implementation 

•  We will end up with a large set of function 
callbacks:  
•  Lump all the functions together into one data 

structure OR 
•  Have a general class that contains all common 

functions, and then children of that class that 
contain functions specific to certain HDF5 
objects OR 

•  For each object have a set of callbacks that are 
specific to that object (This is design choice that 
has been taken). 
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Filters 

•  Need to keep HDF5 filters in mind 
•  Where is the filter applied, before or after the 

VOL plugin? 
- Logical guess now would be before, to avoid 

having all plugins deal with filters 
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Current status of VOL 

•  ? 
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AUTOTUNING 

Research Focus - 
 

August 12, 2014 Extreme Scale Computing PHDF5 



www.hdfgroup.org 

Autotuning Background 

•  Software Autotuning: 
•  Employ empirical techniques to evaluate a set of 

alternative mappings of computation kernels to an 
architecture and select the mapping that obtains the 
best performance.  

•  Autotuning Categories: 
•  Self-tuning library generators such as ATLAS, PhiPAC 

and OSKI for linear algebra, etc. 
•  Compiler-based autotuners that automatically generate 

and search a set of alternative implementations of a 
computation 

•  Application-level autotuners that automate empirical 
search across a set of parameter values proposed by 
the application programmer  
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HDF5 Autotuning 

•  Why? 
•  Because the dominant I/O support request at 

NERSC is poor I/O performance, many/most of 
which can be solved by enabling Lustre 
striping, or tuning another I/O parameter 

•  Scientists shouldn’t have to figure this stuff out! 
•  Two Areas of Focus: 

•  Evaluate techniques for autotuning HPC 
application I/O 
•  File system, MPI, HDF5 

•  Record and Replay HDF5 I/O operations 
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Autotuning HPC I/O 

•  Goal: Avoid tuning each application to each 
machine and file system 
•  Create I/O autotuner library that can inject “optimal” 

parameters for I/O operations on a given system 
•  Using Darshan* tool to create wrappers for HDF5 

calls 
•  Application can be dynamically linked with I/O 

autotuning library 
•  No changes to application or HDF5 library 

•  Using several HPC applications currently: 
•  VPIC, GCRM, Vorpal 
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Autotuning HPC I/O 

•  Initial parameters of interest 
•  File System (Lustre): stripe count, stripe unit 
•  MPI-I/O: Collective buffer size, coll. buffer 

nodes 
•  HDF5: Alignment, sieve buffer size 
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Autotuning HPC I/O 
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Autotuning HPC I/O 

•  Autotuning Exploration/Generation Process: 
•  Iterate over running application many times: 

•  Intercept application’s I/O calls 
•  Inject autotuning parameters 
• Measure resulting performance 

•  Analyze performance information from many 
application runs to create configuration file, 
with best parameters found for application/
machine/file system 
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Autotuning HPC I/O 

•  Using the I/O Autotuning Library: 
•  Dynamically link with I/O autotuner library 
•  I/O autotuner library automatically reads 

parameters from config file created during 
exploration process 

•  I/O autotuner automatically injects autotuning 
parameters as application operates 
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Autotuning HPC I/O 
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Autotuning HPC I/O 
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Autotuning HPC I/O 

Configura'on$#68$
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Autotuning in HDF5 

•  “Auto-Tuning of Parallel IO Parameters for 
HDF5 Applications”, Babak Behzad, et al, 
poster @ SC12 

•  "Taming Parallel I/O Complexity with Auto-
Tuning”, Babak Behzad, et al, SC13 
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Autotuning HPC I/O 

•  Remaining research: 
•  Determine “speed of light” for I/O on system 

and use that to define “good enough” 
performance 

•  Entire space is too large to fully explore, we are 
now evaluating genetic algorithm techniques to 
help find “good enough” parameters 

•  How to factor out “unlucky” exploration runs 
•  Methods for avoiding overriding application 

parameters with autotuned parameters 
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The HDF Group 

Thank You! 

Questions? 
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